
1  Introduction

This program documentation is inspired by a very readable article written by Parnas and Clem-
ents: A Rational Design Process: How and Why to Fake It 1 

This paper brings a message with both bad news and good news. The bad news is that, in 
our opinion, we will never find the philosopher’s stone. We will never find a process that 
allows us to design software in a perfectly rational way. The good news is that we can fake 
it. We can present our system to others as if we had been rational designers and it pays to 
pretend do so during development and maintenance.

I will here record how I could have designed and written the Greed program as if I had known 
all the issues and all the answers beforehand. I will end with a short discussion of the benefits 
or otherwise of basing this program on the DCI paradigm.

Tom Love’s program specification is quoted in section 2. In section 4, I consider the specification 
and decide on a plan of attack. The following sections will then describe the work as it could 
have progressed towards a working and readable program. 

I did not know at the outset if this example will benefit from being written according to the DCI 
paradigm. I will end this report in SEC3 with a discussion of the DCI benefits or otherwise for 
this particular example. 

2  Greed Specification

Ton Love sent the following specification to all workshop participants by fax:

Greed is a dice game played by two or more players. The object of the game is to tally points 
from the rolls of the die, and to be the first player to score 5000 points. There are five die 
in the game, which are rolled from a cup.

To enter the game, a player must score at least 300 points on the first role of his turn, 
otherwise the player is considered “bust.” If he goes “bust,” he must wait until his turn to 
role again. If his first roll does produce 300 or more points, the player then has the option 
of stopping, thus keeping the initial score, or continuing. To continue, the player rolls only 
the die that have not yet scored in his turn. A player may continue rolling until all the dice 
have scored, or until he is “bust.” With the exception of the entry roll, a “bust” is when an 
individual roll produces no points. The player may stop and keep his score after any roll, 
as long as he is not “bust.”

Each roll of the dice is tallied as follows:

Three of a kind score 100 x face value of one of the three die. If the three of a kind is 1s, 
then it is scored as 1000. 22234 = 200 points; 43414 = 400 + 100 = 500 points.

Single 1s and 5s score 100 and 50 points, respectively.

Examples (for first roll):
44446 = 400 points, and the player would have the option to role the 4 & 6.

11111 = 1000 + 100 + 100 = 1200 points, and the player has the option to roll all five die 
again.

12315 = 100 + O + O + 100 + 50 points, and the player would have the option to role the 
2 & 3.

1.D. L. Parnas; P. C. Clements: A Rational Design Process: How and Why to Fake ItIEEE Trans. on Soft-
ware Engineering, SE-12. 2; February 1986
Version of November 16, 2011 4:28 pm Page 1 BabyUML - 002-Greed.fm



Finally, the winner is determined after a player collects a total score of 5000 or more, and 
all players have had an equal number of turns. If, for example, a player scores over 5000 
points, he may still lose if a subsequent player ends up with a final score greater than his.

We see a simple game. Its only complexity is in its scoring rules. The main and probably only 
use case is to play the game in a number of rounds until finished.

3  The User Interface

The user interface in the BabyGreed implementation is to be boringly simple. The interface is 
purely textual with no fancy graphics. Figure 1 shows a first version. 

Figure 1: The user interface. 

I make the game itself a SystemWindow, the other parts are TextMorphs and a RectandleMorph 
as shown in figure 2.

Figure 2: Making the Greed elements visible on the screen. 

BB3Greed

Die

Cup

Seat

1

1

1

5

value
stringMorph

/newScore

classDiagram3

SystemWindow

Morph

RectangleMorph

TextMorph
name

Player

ownScore

3

0..1

seats

dice

cup

player
Version of November 16, 2011 4:28 pm Page 2 BabyUML - 002-Greed.fm



Next to bind it all together, furnishing the BB3Greed class with methods for configuring the 
interface and opening the window.

4  Project planning and system architecture

Three aspects of the problem need be considered. One is the user interface; it can be made very 
fancy with the dice and cup in 3-D and animated throws. Some submitters to the OOPSLA 
workshop had focused on this aspect and presented very impressive solutions. Another aspect 
is the player’s strategy. At least one submitter implemented a very advanced game model. 

A third aspect is the program architecture and implementation. This aspect is in the forefront of 
the current solution. The idea is to build a maximally clean and readable solution that can later 
be extended with fancy graphics and advanced mathematics.

I first have to choose my approach to the programming task. Test Driven Development (TDD) 
is one possibility. I reject it in its pure form because I believe that the data model is as important 
as the use cases so that data model and use cases need be considered separately. Also, I will not 
permit the code for the data model be contaminated with code for the use cases.

I will not provide an automatic test suite because I want to focus on making the code readable 
and will endeavor to make the system architecture obvious from the code. 

The Agile Manifesto is all about how programmers work together. I am a one man team, so may 
be it doesn’t apply here.

The static part of the specification looks simple and complete, so I decide to code the data model 
first and then add system behavior in a second step.

4. 1  The Data projection

The first paragraph of the game specification tells us what the game is; the remainder tells us 
how it is played. The first specifies the static data model; the second specifies its dynamic 
behavior.

An old rule of thumb is to underline the nouns in the specification in order to identify candidates 
for data classes. 

Greed is a dice game played by two or more players. The object of the game is to tally points
from the rolls of the die, and to be the first player to score 5000 points. There are five die
in the game, which are rolled from a cup.

This first specification paragraph leads directly to the UML class diagram in figure 3
Version of November 16, 2011 4:28 pm Page 3 BabyUML - 002-Greed.fm



Figure 3: First UML class diagram. 

Our task is to implement the Greed game, we are not asked to implement a general dice 
game.We start simple, and merge the Game and Greed classes.

An important point is that this class diagram does not show the dynamic structures that are 
needed to actually play the game. We will implement the dynamic structures in a Context class 
for each use case, leaving the data classes as simple as possible.

The next decision is about user interaction. The MVC paradigm has a clear separation between 
user interaction and domain data:

User The most important participant is not represented in the acronym.

Model The computer internal representation of the Greed game.

View Makes domain data visible and tangible in a way that facilitates user 
interpretation of the model data.

Controller Coordinates several views. (Note: The Controller is an input device in 
Smalltalk-80. There is no element coordinating several views).

MVC is useful when domain information need to be presented in different ways or in multiple 
copies on the screen. Here, there is no need for multiple views of the same information since 
we want the game of Greed be directly visible and tangible on the screen. We therefore decide 
to implement the game in Morphic with the Greed objects showing themselves on the screen.

I tentatively design a simple class structure for Greed and start by implementing the class dia-
gram shown in figure 4. I decide to prefix all class names with BB3 to distinguish them from all 
other class names.

Game

Greed

Die

Cup name

Player
*

1

1

1

5

1

value

/ gameScore

classDiagram1

ownScore
Version of November 16, 2011 4:28 pm Page 4 BabyUML - 002-Greed.fm



Figure 4: First UML class diagram to be implemented. 

I enter my Squeak image, 

• open BabyIDE from the World menu open...>>BabyIDE.
Answer BB3Greed when it asks for app name.

• The Greed class shall specify the handling of input to the game. The class shall therefore 
be defined in the Env perspective. Select the Env perspective. 

• The usual text for a class definition is shown in the code pane.
Fill in superclass Morph and class name BB3Greed. Accept.

• Select the Data perspective. Define the Cup, Die, and Player classes.

4. 2  The Use Cases

BB3AddPlayerCtxAdd player.

BB3PlayGameCtxPlay.

BB3Greed

Die

Cup

Seat

1

1

1

5

value
stringMorph

/newScore

classDiagram3

SystemWindow

Morph

RectangleMorph

TextMorph
name

Player

ownScore

3

0..1

seats

dice

cup

player
Version of November 16, 2011 4:28 pm Page 5 BabyUML - 002-Greed.fm


	1 Introduction
	2 Greed Specification
	3 The User Interface
	4 Project planning and system architecture
	4. 1 The Data projection
	4. 2 The Use Cases


