
draft-1.14 last modified 2015.02.17 18:36 Page 1 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Working with objects — in computer and mind

Trygve Reenskaug, James O. Coplien
Dept. of Informatics, Gertrud & Cope
University of Oslo Copenhagen
Norway Denmark
(“Trygve”) (“Cope”)

ver.1.3 - Last modified FrameMaker version: November 23, 2013 2:48 pm
draft.1.4.2 - FrameMaker version: Updated and edited from “ver1.3.1.bvs.fdbk.docx”
draft.1.4.5 - Minor updates. (.fm +.pdf)
draft 1.5.1 - Incorporate comments from Risto
draft 1.6.1 - 24.01.07-’Data’ names a kind of projection, not a set of objects. ‘base object’ has been renamed to ‘root object’.
draft-1.14.3 - 2/17/15 - Updated section 3.1 + other changes inspired by several comments.
draft 1.9 - Feb. 20-2014- Corrected misprints MB.
draft 1.10 - June 16 2014 - New, large example
draft 1.10.1 - June 28 2014 - Minor changes
draft 1.10.2 - July 11 2014 - Minor changes
draft 1.11.01 - Aug. 3, 2014. Major rewrite in several stages. Concepts presented on the background of an example.

System behavior in the forefront.
draft 1.11.02- Body of article rewritten. MVC removed. Example marked blue in preparation for new example.
draft 1.12.01 - Revised from Bruce comments Prokon example retained, its presentation in the paper completely reworked.
draft 1.13 - Revised section 4: Example
draft 1.14 - General revision + extended section 4: example program.

Abstract

After more than 60 years with computers, hundreds of millions of people are dextrous
at using them. Yet, the source code for a simple app is incomprehensible to almost all.
We claim this is wasteful and passé -- wasteful, because many valuable opportunities
are lost; passé because computer programming is rapidly becoming an essential part
of civilized life.

We introduce a new paradigm for computer programming called DCI - Data, Context,
Interaction. DCI brings programming to the level of everyday concepts and activities.
The novice can write simple code. The professional programmer can attack complex
problems without undue additional complexity. The software maintainer can preserve
system integrity by understanding and honoring the system architecture long after the
originators have moved on to other projects. DCI can be embedded in many different
programming languages. The DCI concepts can become a unifying foundation for
programming.

A DCI program is specified in two orthogonal projections: The Data projection
describes what the system is, its static properties. The Context projection describes
what the system does, its runtime behavior.

Key Insights

• A computer can augment the human intellect when the
human mental model closely corresponds to the com-
puter’s internal model as defined by its program.

• There is strong evidence that an object-oriented model of
a computation is well matched to the human mind.

• An object-oriented model of a computation can be shared
between the end user’s mind and the design of the pro-
gram. This gives the user leverage to maximize the value
of the program.

1 Introduction

This article is about people. Our target is the general computer user, but we will especially focus
on professional users who apply digital systems to improve the performance of their tasks. Their
mental models will be grounded in the disciplines that drive their work and our goal is to write

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 2 ©2014 Trygve M. H. Reenskaug and James O. Coplien

computer programs that feel like extensions of their minds. The lean principle “everybody, all

together, all the time”3 says that the user shall be an active member of the development team.

We propose a new programming paradigm that we call DCI -- Data, Context, and Interaction
to close the gap between mind and computer. Users who understand simple code can explore a
program’s capabilities and suggest well-founded improvements. This is not a trivial goal.
Indeed, in the introduction to the Design Patterns book8 pp. 22-23, the authors write: “it's clear that
code won't reveal everything about how a system will work.” It is frightening to read that there
are mission critical systems in use today where the code does not reveal how the systems
actually work. The end users are not alone in their illiteracy; even system maintainers and other
experts have problems understanding what goes on in the computer.

This problem challenges us to find a way to write code
that clearly expresses the system’s runtime behavior.

The DCI focus on the end user’s mental model makes it imperative to distinguish clearly
between what is in the user’s mind and what is represented in the computer. These IFIP
definitions of 196611 have withstood the test of time:

“DATA. A representation of facts or ideas in a formalized manner capable of being
communicated or manipulated by some process.”

“INFORMATION. In automatic data processing the meaning that a human assigns to
data by means of the known conventions used in its representation.”

There is no information in a computer system, not even in the World Wide Web; there is only
data. Any human who understands the conventions can convert data to information. Such
understanding is the first stage of computer literacy.

An essential part of the data existing in any computer system is the code that controls it. Any
human who understands the code conventions can build a mental model of how the system
works. Such understanding is the second stage of computer literacy.

Fundamentally, a computer offers three simple services: It can store data, it can transform data,
and it can communicate data -- so simple, yet so powerful when combined in various ways into
comprehensive programs. The DCI challenge is to reflect this fundamental simplicity of
computing in the programs we write and use. The human mental model of a computer program
shall be based on DCI and be reified into readable code24. There shall be no surprises.

The main goals of DCI are:

MENTAL MODELS. To reflect the way different users conceptualize the objects of their world so that
a program feels like an extension of its user's mind.

REASONING. To help software developers reason about system state and behavior in addition to the
state and behavior of isolated objects.

READABILITY. To improve the readability of object-oriented code by giving system behavior
first-class status.

REUSE. To be able to reuse old solutions for new purposes.

REVISION. To cleanly separate code for rapidly changing system behavior (what the system does)
from code for slowly changing domain knowledge (what the system is), instead of combining both
in one class hierarchy.

DCI is a general paradigm for computer programming and is applicable to many different
problem areas and programming languages. We will evolve the conceptual model of DCI in the
body of this article and simultaneously build a concrete program to illustrate the ideas. The
example is Prokon, the activity network planning tool shown in figure 1.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 3 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Figure 1: Prokon, an activity network planning tool.

DCI is firmly interwoven with the notion of objects. This notion has matured over the years,
and in section 2: The Roots of DCI we glean powerful concepts created over the past four
decades and see how they contribute to the DCI paradigm. The DCI paradigm presented in
section 3: DCI, the new Programming Paradigm. Our example program is completed in
section 4: Prokon: Our Activity Network Planning Program. In section 5: Related Work, we
briefly comment on other efforts that are related to DCI. Suggestions for further work are in
section 6. In section 7, we conclude with the vision of DCI as a programming paradigm that
spans many programming and modeling languages as well as personal users and
schoolchildren. More details about the example in the appendices.

2 The Roots of DCI

2.1 Prokon’s Distributed Systems

Figure 2: Prokon, a distributed system architecture

By 1970, it was clear that there was a
fundamental lack of balance between the
decentralized nature of an organization’s
distribution of responsibility and authority and
the centralized nature of a database-centered
system architecture.19 The Prokon project
proposed a distributed system architecture
(figure 2) to restore the balance.

As an example, managers use their computer to
create plans for their own area of responsibility.
They would delegate to their computer to
negotiate with other managers to create an
overall plan. This created a need for algorithmic
control over the communication as a whole.
(“Local independence combined with central coordination”20).

Communication became a first class citizen of system architecture.

The project had many ideas that pointed towards general principles of system architecture:

• The end user is the defining entity for overall system architecture as well as system details.
• The communication bus connects autonomous computers that encapsulate state and behavior.
• There is algorithmic control over the communication as a whole.

An activity represents a task that needs
to be done. It cannot start before all its
predecessor activities are completed,
and it must end before its successor
activities can start. An activity
dependency graph is shown in pane
. Front- and backloading compute
the earliest and latest start and end
times given project start and end. The
results are shown in pane ; the
yellow, top bars show earliest and the
bottom, green bars show the latest
times. Pane shows how the
activities are allocated to the resource,
two programmers named Ava and Joe.
Pane identifies the program version
and Activity properties can be edited in
pane .

Managers owned their computer and used it for their
daily tasks. Specifically, they delegated to their computer
to collaborate with other managers’ computers through
the communication network. (Heavy lines: Computer
communication Thin lines: Analog communication.)

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 4 ©2014 Trygve M. H. Reenskaug and James O. Coplien

• The architecture is recursive; a senior manager can be responsible for a group of junior managers that
collaborate through a subnetwork.

The Prokon project lost its funding and its distributed system was never built. A user interface
for managers was written in Smalltalk. It was similar to our example program and led to the
MVC programming paradigm (appendix 2).

Prokon gave a glimpse of a possible architecture for our example program: Divide the system
into autonomous components. Let each component be responsible for storing its part of the
system data and for transforming these data as required. Let these components interact through
message interaction. Create system level interaction algorithms that achieve the program’s
behavior.

2.2 The First Object

Nygaard and Dahl’s concept of objects was realized in the programming language Simula 6719.
The language introduced object modeling as a new and powerful way of thinking about
complex systems. Originally designed to simulate real-world phenomena, Simula has also
enjoyed application as a general-purpose programming language. The construction of a Simula
object is given by a class declaration that includes a name, a data structure declaration, and the
behavior of each object of the class. (We shall later use the terms attributes for the data structure
and methods for the behavior.)

The Simula experience indicated that complex physical systems could be
naturally reflected in mental and computerized object models.

Simula objects could apparently reify the Prokon components. This idea was quashed by the
tight coupling of Simula objects through coroutines while Prokon components were loosely
coupled through message interaction.

2.3 Kay’s Object Orientation

Figure 3: The Smalltalk experiment.

From the late sixties, Alan Kay had worked on
his vision of a Dynabook: “A personal
computer for children of all ages.”12 As part of
his work, he introduced a powerful model that
he called object orientation:

“In computer terms, Smalltalk is a
recursion on the notion of computer itself.
Instead of dividing ‘computer stuff’ into
things each less strong than the
whole--like data structures, procedures,
and functions which are the usual
paraphernalia of programming
languages--each Smalltalk object is a
recursion on the entire possibilities of the
computer. Thus its semantics are a bit
like having thousands and thousands of
computers all hooked together by a very
fast network...”13

In most computers, data is represented as binary
words in the memory and data processing takes
place as defined by IFIP11:

Kay’s group at PARC taught programming to children. The
children see each object as a ‘turtle’ with a pen under its
belly.

turtle go: 100; turn: 90; go: 100; turn: 90;
go: 100; turn: 90; go: 100.

makes the turtle draw a square.

The children used Kay's ideas to write quite complex
programs (See the results on the wall). The research
showed that the notion of objects formed a solid foundation
for children’s programming.

<TBD> Picture © Alan Kay?

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 5 ©2014 Trygve M. H. Reenskaug and James O. Coplien

“DATA PROCESSING. The execution of a systematic sequence of operations
performed upon data.”

This definition reflects how computers are constructed with a data store and a control unit that
extracts a stream of instructions from the store and executes them one by one. This hardware
model can be found at the core of most programming languages.

Alan Kay broke with this tradition with his definition of object orientation. At the core of
Smalltalk there is an object store and data processing is the systematic flow of messages
between objects. Smalltalk is a first example of an object computer. All information of interest,
and this includes computer programs, is represented as objects. Data is stored in objects. Data
is transformed by objects. Data is communicated between objects.

Kay’s object model is a new foundation for thinking about and programming
computers. It seems to have a a good fit with the children’s mind (figure 3).
Simula (section 2.2) and OOram (2.4) suggest that the same applies to
professionals in business and industry.

The object computer lets us hide many low level details in order to create models that are closer
to the human mind. There is no loss of substance; we can still store, transform, and
communicate data recursively. An object computer can be built in hardware or, which is more
common, we can emulate it on a conventional computer.

We decide to construct our example program as an
ensemble of communicating objects.

2.4 OOram Role Modeling

OOram, Object Oriented Role Analysis and Modeling, models the behavior of an object system
as a flow of messages between participating objects.23 Its main contribution is the notion of a
Role that identifies an object in a network of interacting objects according to its use. There is an
analogy with the theatre: A human plays a role in a play; an object plays a role in a role model. Both are
dynamic; they relate to what the system does rather than what it is.

Figure 4: OOram role model -- frontloading.

The message sequence chart in figure 4
illustrates a very simple algorithm for
frontloading in our example (in figure 1). An
object named Frontloader receives a message
frontload. This triggers a method that first sends
reset to all activities before it asks the activities to
frontload|. The activity asks its predecessors for
their early finish times.

An OOram role can be played by objects of
different kinds so that the actual methods that
will be executed is unknown. OOram - like its
descendant, the UML collaboration27 - observes
black box objects. We see that activities are asked
to frontload; we miss the crucial selection of the sequence of activities visited (section 4.1).
OOram is a modeling tool.

3 DCI, the new Programming Paradigm

We quoted from the Design Patterns book in the introduction. Here’s the full quote8 pp. 22-23:

The OOram role is the basic object abstraction in the
OOram technology. Real world behavior is described as a
number of collaborating objects that are named by the role
they play in the collaboration.23

In the above diagram, roles are shown as rounded
rectangles with time going down along the vertical line.
Object interaction is modeled as a sequence of messages
(shown as arrows). An object processes a received
message with a method shown as a vertical rectangle.
OOram has no facility for specifying the body of this
method. The asterisk indicates a collection so that reset
will be sent to all activities in turn.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 6 ©2014 Trygve M. H. Reenskaug and James O. Coplien

“An object-oriented program’s run-time structure often bears little resemblance to
its code structure. The code structure is frozen at compile-time; it consists of
classes in fixed inheritance relationships. A program’s run-time structure consists
of rapidly changing networks of communicating objects. In fact, the two structures
are largely independent. Trying to understand one from the other is like trying to
understand the dynamism of living ecosystems from the static taxonomy of plants
and animals, and vice versa.”

and:

“it's clear that code won't reveal everything about how a system will work.”

DCI -- Data, Context, and Interaction, is the new paradigm that fills the void by saying
everything about how a system works at run time. It achieves this by separating the program
into largely independent projections. The code for the compile-time structure is captured in the
Data projection; it consists of classes that have been stripped of code for object interaction. This
projection is a reification of the user’s information model (section 3.2).

Figure 5: Object, role and context

The code for the run-time structure is captured in
the Context projection with networks of
communicating objects. This projection is a
reification of the user’s mental model of how the
system handles use cases with their scenarios and
system operations. The Contexts are kept
independent by having a separate Context for each
operation. (section 3.3)

Figure 5 illustrates a universe of objects and how
the two projections are visible to observers placed
inside and outside the objects.

The essence of object orientation is
that objects collaborate to achieve a
goal.

3.1 The DCI Object and its Properties

It is time to refine our notion of an object. Kay’s notion of object orientation (section 2.3)
defines an object as a self-contained entity that has all the capabilities of a computer. We add
ideas from Prokon (section 2.1) and OOram (section 2.4) to define the DCI object. This object
has seven basic properties that are essential to the DCI paradigm:

Compile time properties

State Like a computer, the DCI object can store data in its attributes. Think of an object
as a database record that is encapsulated within the object boundary.

Own Behavior Like a computer, the DCI object can process data with its methods. Think of them
as local procedures that are visible only within the object.

Run time properties

Encapsulation Like a computer, a DCI object is encapsulated within an abstraction boundary.
The object presents a message interface to its environment just as the computer
presents an instruction repertoire. Its concrete realization in software or hardware

The figure describes a universe of Data objects. We
have two observers.

One observer is inside an object and can see how it is
constructed, i.e., its class. Instances of different classes
are shown as different shapes. Class hierarchies are not
shown.

The other, outer observer sees networks of
communicating objects. One such network is shown as
a structure of communicating roles contained within a
Context, here shown as a dashed outline. The
messages flowing during an Interaction are shown as
numbered arrows.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 7 ©2014 Trygve M. H. Reenskaug and James O. Coplien

is not visible outside the object’s boundary. Different objects may invoke different
methods for the same message, this is called polymorphism. (“Call By Intent”)

Communication Like a computer, a DCI object can communicate with other objects through
message interaction.

Identity Like a computer, a DCI object has a unique and immutable identity. This is
essential for reasoning about networks of interacting objects.

Synergic Behavior An object’s behavior is composed from its own behavior together with the
synergic behavior that the role acquires because it is a participant in a
collaboration. (Role methods, section 3.3)

Processes We tend to think of an object as running in its own process. This is consistent with
the object models discussed in sections 2.1, 2.2, and 2.3. Most object-oriented
programming languages are basically single process. Nevertheless, we tend to
stick to multi-process mental models and pretend that the message passing is
synchronous.

A DCI object is encapsulated so that its inner construction is invisible from
the outside. Consequently, the object’s inside can be anything: A network of
communicating objects, a Fortran program, an SQL machine, a state
machine, a Petri net, or it or a realization of any other paradigm. The DCI
Object supports multi-paradigm design.2

An object can be an instance of a class, a copy of a prototype28, or some other construction
mechanism. For convenience, we use the word class for all such mechanisms. The class is the
predominate concept used in current programming and research. It considers the compile-time
object properties as relevant; the run-time properties are ignored.

Like a computer, an object does not expose how it reifies the messages in
its interface. The object’s boundary forms, by definition, an abstraction
boundary. In contrast, role methods are outside the object’s abstraction
boundary; they are compressions that are open to reading and
understanding, rather than abstractions whose correct functioning is left to
trust.

3.2 The D stands for Data - What the system Is.

In the introduction, we defined information as “the meaning that a human assigns to data by means of

the known conventions used in its representation.” The DCI Data projection uses classes to specify the
information part of the user’s mental model. A writer of a class builds on domain knowledge
and its known conventions and a reader of the class use them to make sense of the code. Both
can reason about each class in isolation because its instances are observed from within the
object boundary. The writer of the class takes responsibility for its correct implementation to
permit the writer of a role method to take the object’s interface on trust.

This trust is well placed because the methods visible in the Data projection are like C functions,
they compute only primitive operations on the data within their domain of responsibility. These
methods will not, at the level of the active design discourse, trigger message interaction outside
object boundaries.

Many objects represent ideas in the user's problem domain. Other objects are helpers such as
values and collections that are reflected in the programmer's mental model. An object can even
be a Context object that plays a role in an outer Context, thus supporting recursion. Data objects
are objects that is destined to play roles in contexts. They are often simpler than their regular
counterparts because system behavior has been moved to the contexts. Informally, we say that
an object is unaware of its environment. A Data class can be reasoned about and tested as a
separate entity.

In our example, Data objects are activities, dependencies and the single resource. Activities are
visible in panes , , and of figure 1 as squares, bars, and annotations. Schemas for the

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 8 ©2014 Trygve M. H. Reenskaug and James O. Coplien

data objects are shown in figure 6. The corresponding classes follow trivially, and any
object-relational impedance mismatch is minimized

Figure 6: The Prokon model objects are like rows in database tables:

3.3 The C and I stand for Context and Interaction - What the system Does.

An outside observer can trace the messages that flow through an ensemble of objects during the
execution of an operation. (figure 5) The topology of the trace is a directed graph where the
nodes are roles and the edges are connectors. DCI requires that this topology stays the same for
all executions of the same operation. This is the form of the execution. The ensemble of objects
is mapped on to roles within a Context (section 2.4) with this selection:

<role player> = select <attribute> from <Data> where <condition>

This gives us a more precise understanding of Data objects:

Data objects are objects that are visible in a context for the use as role
players. Any object can play a role in a context, but only some of them do so.
The distinguishing mark is their use.

Contexts yield a synergy effect; the value of a context is greater then the simple sum of its
objects. This is partly caused by the context’s form, but also by the context’s interaction
algorithm that computes a system operation.

The word role stems from the French rôle roll (as of paper) containing the actor's parta. The
actor reads from this script when performing the role. In a similar vein, the context decomposes
the interaction algorithm into scripts that are attached to its roles. These role methods manifest
synergetic behavior that is not visible in the data classes; the Context regards objects only in
terms of their identities and the interfaces they provide. Their actual construction is irrelevant.
This means that we can reason about system operations without having to study the classes. As
Brian Kernighan characterized C functions, a method should do one thing and do it well. Each
should fit on one or two screens of text. 31

a. See dictionary.com

CREATE TABLE
activities

oo
p

 -
 O

B
JE

C
T

ID
 -

 P
R

IM
A

R
Y
 K

E
Y

na
m

e
-

V
A

R
C

H
A

R
(5

0
)

-
N

O
T
 N

U
LL

du
ra

tio
n

 -
 IN

T
E

G
E

R
 -

 N
O

T
 N

U
LL

ea
rly

S
ta

rt
 -

 IN
T

E
G

E
R

 -
 N

O
T
 N

U
LL

et
c.

...

...

CREATE TABLE
dependencies

fr
om

A
ct

iv
ity

 -
 O

B
JE

C
T

ID
 -

 N
O

T
 N

U
LL

to
A

ct
iv

ity
 -

 O
B

JE
C

T
ID

 -
 N

O
T
 N

U
LL

... ...

... ...

CREATE TABLE
allocations

w
ee

kN
o

-
IN

T
E

G
E

R

ac
tiv

ity
 -

 O
B

JE
C

T
ID

... ...

... ...

There are also a stored procedure in the activities table:
earlyFinish = earlyStart + duration.

Draf
t

dictionary.com

draft-1.14 last modified 2015.02.17 18:36 Page 9 ©2014 Trygve M. H. Reenskaug and James O. Coplien

The value of a class-oriented system is maximally the sum of its parts. The
addition of explicit information about the runtime structure and behavior of
the parts can make the value of a DCI Context greater than the sum of its
parts.

Typically, roles will be mapped to different objects in different executions. The mapping
maintains the consistency between otherwise independent Data and Context projections.

Projections can evolve at different rates and can be implemented and tested
by different people.

A role method creates an ephemeral extension of object functionality while it is needed at
runtime. Role methods can, therefore, extend instances of library classes without having access
to those classes.

3.4 Summing up

A class says everything about the inner construction of an object but nothing
about how it is used in its interaction with other objects. A context says
everything about how the objects are used but says nothing about their
insides.

Figure 7: The basic capabilities of computers and objects.

In the introduction, we said that a computer offers
three simple services: It can store data, it can
transform data, and it can communicate data.
Figure 7 shows how DCI supports these capabilities
in a balanced manner within a system. Systems store
data as specified in the Data classes, networks of
communicating objects are specified in the Contexts,
and the composite behavior of objects is specified in
their own and role methods.The dashed outline
indicates that an object can encompass all three
capabilities. Recursion implies that an object can
play a role in an outer context and that it can
encapsulate an inner context.

Table 1 compares conventional programming with the DCI paradigm. We see that the class
serves all purposes in conventional programming while object communication is coded
explicitly in DCI programming.

Table 1: Objects collaborate to achieve a system operation/use case scenario.

Conventional OOP DCI

What are the
participating objects?

Instances of relevant classes. A Context selects objects to
play its roles at runtime.

How are they
interconnected?

There is no explicit
specification of the
communication network.

The network topology is
explicitly specified in the
Context.

What do they do? System behavior is
fragmented among the
classes.

The role methods explicitly
drive the interaction within a
context.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 10 ©2014 Trygve M. H. Reenskaug and James O. Coplien

4 Prokon: Our Activity Network Planning Program

We are now ready to implement the planning program of figure 1. The interface is designed to
reflect the user’s mental model of a plan with its structure of activities, dependencies, and a
single resource. We ensure close correspondence between mental model and program by
representing the model with an object that contains a similar structure of activity, dependency,
and resource objects much as a database contains the corresponding records (figure 6). These
objects together with their classes constitute the Data part of the program. This direct
implementation of the human information model makes this part of the program easy to
understand and protects the user against unpleasant surprises.

Human users understand how to perform operations on the plan: frontloading, backloading, and
resource allocation. Each operation is implemented as a DCI context where the participating
objects are identified by the roles they play during an execution. Each context is self contained
so that it can be studied and tested in isolation.

The program as a whole is described in appendix 1. We will here concentrate on the
frontloading and resource allocation operations as illustrations of how DCI handles
collaborating objects.

4.1 Frontloading

Figure 8: Frontloading Context Diagram

The goal of the frontloading operation is to
compute the earliest possible start for every
activity given the start of the project. We described
a role model for the frontloading operation in
section 2.4.We will now replace the unknown
methods shown as vertical rectangles in figure 4
with DCI role methods.

DCI wants everything in one place, so we create a frontloading context that names and
encapsulates the objects that participate in the execution of the operation. An activity can start
as soon as all is predecessors are finished. We have two main roles: The ACTIVITY under
consideration and the PLAN that loops through all the activities. (figure 8).

There are two role methods:

ACTIVITY>>frontload
maxPred = PROJECTSTART.
for all pred in PREDECESSORS do

maxPred = max (maxPred, pred.earlyFinish)
end for
ACTIVITY.setEarlyStart (maxPred+1)

PLAN>>frontload
for all act in PLAN.activities do

act.setEarlyStart (NULL) //set unplanned
end for
CURRENTCONTEXT.remap
while ACTIVITY NOT NULL

ACTIVITY.frontload
CurrentCONTEXT.remap

end while

The context object itself is responsible for selecting the objects that are to play the roles. Most
selections are trivial. The selection of an activity to play the ACTIVITY role has to be done

PREDECESSORSP ROJECTS T ARTCURRENTCONT EXT

ACTIVITYPLAN

This context diagram names the objects that
participate in the frontloading operation and shows the
communication paths between them.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 11 ©2014 Trygve M. H. Reenskaug and James O. Coplien

systematically. because the algorithm only works for an activity if the earlyFinish-times are
known for all its predecessors. This mapping is done in this snippet from the Context remap
method:

FrontloadContext>>Activity
select act from activities

where
act.earlyStart NOT NULL

and
select fromActivity from dependencies
where fromActivity = act
and fromActivity.earlyFinish IS NULL

IS EMPTY

The interaction is triggered from outside the context object. This will typically happen
somewhere in the user interface:

FrontloadContext new (plan).frontload()

The plan objects are the Data objects used by the context. This isolates the context from the rest
of the system; no other object can play a role in the context. Whatever their state before, all
activity objects will have their earlyStart and -Finish times set according to the frontloading
algorithm. There will be no other changes; all classes and objects will remain unchanged all
through the process.

The DCI context tells the truth, the whole truth and nothing but the truth
about how an ensemble of objects reify a system operation. The code can
be understood, created, tested, and modified as a whole.

New contexts such as resource allocation can be added without increasing the complexity of
the system.

Why should we package the frontloading algorithm in a context when
conventional OO program can do the job? The main reason is that the DCI
context concentrates everything about how the system achieves the
operation so that its code can be considered in isolation, independently of
the program outside it. The isolation leads to better readability because
conventional OO distributes code fragments among the classes where it is
not easy to discern what is relevant from what is irrelevant. The isolation
improves program robustness by making it unlikely that the algorithm
code will threaten the integrity of the rest of the program.
Conversely, it is equally unlikely that changes in the rest of the code
will threaten the integrity of the interaction algorithm

4.2 Resource Allocation

There is no simple algorithm for resource allocation so the solution is necessarily pragmatic and
user involvement in the programming is essential. Our initial solution is intended as a starting
point for discussions with the end users. It leads to the allocations shown in pane in figure 1.
We will describe the code for this solution and claim that its simplicity and its weak coupling
to other parts of the program makes it feasible for users to understand it and improve it.

Figure 8: The ResourceAllocationCtx.

Resource allocation can be seen as a dialog between
activity objects that seek to complete the project on
time, and resource objects that strive for their best
possible utilization.20

The resource Data model is shown in the allocations table in figure 6.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 12 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Figure 8 shows our initial Context for resource allocation with the ACTIVITIES and RESOURCE
roles and an ALLOCATOR that coordinates the process.

A “first come first served” strategy is chosen for this initial version of the role methods:

ALLOCATOR>>allocateResources
RESOURCE.reset.

// First decision is to delegate to the activities to control the sequence.
ALLACTIVITIES.allocateResources.

ALLACTIVITIES>>allocateResources
for act in self do

RESOURCE.allocate (act)
end for

RESOURCE>>allocate (activity)
tentativeStart = activity.lateStart
for week = tentativeStart to tentativeStart + activity.duration - 1

for i = 1 to activity bods
RESOURCE.allocate (week, activity)

end for
end for
activity.setPlannedStart (tentativeStart).

About a dozen lines of code that are well isolated from the more than 1500 lines in the whole
program.

5 Related Work

DCI has strong echoes of ideas that came and went before it, many of which attempted to
address related problems with object orientation since its early days. In the same sense that DCI
breaks the common Cartesian classification found in class-oriented programming, so did many
of these earlier concepts and features. Cannon's Flavors1 offers “mix-ins” as a way to associate
multiple lightweight classes and their methods with a single object. However, Flavors has no
notion of sequencing the “mix-in” methods and no way to associate stand-alone “mix-ins” in a
standalone (i.e., without classes or objects) execution graph.

Steele's multiple dispatch26 provided a way to associate multiple objects through a single
operation that engages all of them. Different combinations of object types are mapped onto
different method selectors. Multiple dispatch is somewhat like DCI inside-out: no single
sequencing of role methods serves all combinations of object types, but rather each combination
of object types implicates a method suitable to that combination, which in turn sequences
actions upon those instances.

The self language of Ungar and Smith28 has strong facilities to encourage thinking in terms of
objects instead of classes, which guards against class-oriented thinking. But, again, there is no
focus on a single locus of recurring execution sequence analogous to a DCI Context.

In many ways, DCI implements one deeper level of reflection than its weaker cousin that
supports the polymorphism found in most modern object-oriented programming languages.
The original vision of Aspect-Oriented Programming (AOP)14 was also rooted in reflection, and
also arranged to factor out scattered implementations of key design concerns into a central
concept called an Aspect. However, Aspects tend to focus on multiple insertions (at joinpoints)
of a single change (advice) rather than on the coordinated introduction of sequenced methods
across an arbitrary set of objects. Its mechanisms tend to be class-oriented rather than encoding
any system-level view of what objects should play which roles. AOP tends to operate at the
level of the programming language execution model, while DCI tends to operate at the level of
business concepts. Aspects tend to erode code readability while DCI enhances it.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 13 ©2014 Trygve M. H. Reenskaug and James O. Coplien

DCI is in many ways similar to Actors10, but in the end is fundamentally different. Both take
the triad of store, transform (or process) and communicate as their foundation. Actors is based
on a many-to-many addressing model whereas DCI is based on a one-to-many association
model between roles and objects and a fixed role method sequencing taxonomy.

ObjectTeams is a separate effort that emphasizes separate run-time entities for roles and the
objects that play them.9 Its goals are similar to those of DCI, but its failure to maintain object
identity introduces errors into algorithms that depend on it, as can be demonstrated with a
simple program.4 ObjectTeams converted its terminology to be consistent with DCI
terminology in 2013.

6 Future Work

A concrete vision that foresaw today's state of DCI dates back to about 2003, which means that
DCI today may be where original object orientation was in the early 1980s. In section 3.1, we
mentioned that DCI objects can encapsulate different sub-systems. This opens for an interesting
study of how DCI can work with other paradigms in the design of large systems. There may be
interesting work to be done on concurrency in ways that reflect the original Simula goals of
simulated or real parallel time threads, and to evaluate how those play with the single-threaded
execution model of DCI Contexts.

A particularly promising avenue of research is the teaching of programming to children. An
object computer (section 2.3) with the DCI version of object orientation could form a
foundation that the children could build upon from their first uncertain steps to a mature
mastering of computer programming. There can be a steady progression; there need be no
unlearning.

Work remains to further formalize the DCI metamodel. The constraints that Contexts place on
object interactions offer the possibility of formal program analyses that were impossible in the
past without sacrificing polymorphism.

7 Conclusion

We started section 3 with a quote8 saying that an object-oriented program has two structures; a
hierarchy of classes and rapidly changing networks of communicating objects. The problem
was that “the code won't reveal everything about how a system will work”. Our solution is DCI
with static Data projections that specify hierarchies of classes and dynamic Context projections
that specify networks of communicating objects that reify use case scenarios and other system
operations.

Section 2 chronicled more than 40 years of gradual evolution towards the simple solution called
DCI. DCI meets the 5 goals that were listed in the introduction:

Mental Models. There is ample evidence from a variety of people ranging from professionals to
children that object models fit well to the human mind (section 2.3).

Reasoning. We work with a DCI program in the orthogonal Data and Context projections. This
conceptually simple, yet effective representation enables a developer to reason
about one dimension at a time.

Readability. Readable code is code that is cleanly partitioned and that clearly exhibits the
system design.24 DCI’s orthogonal projections provides such independent
partitions.

Reuse. There are two opportunities for reuse with DCI. One is that the classes in the Data
projection are self contained. They are independent of their environment and can
be reused for other purposes. The second is that a Context implements a system
operation. This Context can be used by another, outer, Context analogously to a
subroutine. This reuse reflects the recursive nature of DCI.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 14 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Revision. Data and Context are orthogonal; this invites independent evolution. A slowly
evolving Data structure in the classes is decoupled from the more rapidly
changing business logic in the Contexts. Contexts can be added, deleted, and
changed independently of the other parts of the system.

Proof-of-concept implementations in Squeak and Marvin5 show that the DCI paradigm can be
expressed in suitable programming languages and be supported in effective development
environments. Interesting developments are happening with adapting a number of languages
such as C#, Ruby, and C++ to DCI. The goal is to make a program design conform to an end
user's mental model of a system and clearly express it in code that reveals how a system will
work.

“More than twenty years of experience has shown us that a bad system
design can never be hidden from the user, even by a masterfully devised
user interface. A quality system, therefore, must be based on sound design
that can be described in terms with which the user is familiar.”22

Software creates value only when an end user executes it for a purpose. History and common
sense argue that users can reap the full value only when they understand how the system works;
the ideal being that stakeholders can understand critical parts of the program and that some can
even write code themselves. We have shown that DCI is well attuned to the human mind. DCI
can, therefore, be a key to user understanding of what goes on in the computer when
stakeholders apply it to their various tasks. Indeed, we claim that DCI is so powerful that it can
form a conceptual foundation for expert programmers and that it is so simple and universal that
it can form a foundation for children learning about computing as a part of their four Rs:
Reading, wRiting, aRithmetic, and pRogramming.

At long last, communication is a first class citizen of programming. Store,
transform, and communicate, the primitives of computing that are captured
in the DCI paradigm (section 3.4). We expect that this addition of a new
dimension to programming will have a profound influence on program
architecture and programming languages. So simple that everybody can
understand it, so universal that it can form the foundation for computing in
business and education.

8 Acknowledgements

Matthew Browne
Gertrud Bjørnvig
Morten Jacobsen
Herman Peeren
Branislav V. Selic
Rune Funch Søltoft
Risto Valimaki
Bruce Horn
<TBD: add more>

Draf
t

draft-1.13 last modified 2015.02.17 18:36 Page 15 ©2014 Trygve M. H. Reenskaug and James O. Coplien

9 References

.

1 Cannon, Howard. Flavors: A non-hierarchical approach to object-oriented
programming.
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf, 1979.

2 James O. Coplien: Multi-Paradigm Design for C++; Addison-Wesley Professional;
1998; ISBN 0201824671

3 Coplien, J.O., Bjørnvig, G; Lean Architecture for Agile Software Development; Wiley,
Chichester, UK, 2010; ISBN 978-0-470-68420-7

4 Coplien, James O., and Reenskaug,T: The data, context and interaction paradigm. In
Gary T. Leavens (Ed.): Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH '12, Tucson, AZ, USA, October 21-25, 2012. ACM
2012, ISBN 978-1-4503-1563-0, pp. 227 - 228.

5 The DCI Home page. http://fullOO.info

6 Douglas C. Engelbart: Augmenting Human Intellect: A Conceptual Framework.
Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578
for Air Force Office of Scientific Research, Stanford Research Institute, Menlo Park,
Ca., October 1962: www.liquidinformation.org/ohs/62_paper_full.pdf

7 Rune Funch Søltoft: Marvin. https://github.com/runefs/Marvin

8 Gamma et.al.: Design Patterns. Addison Wesley1995

9 Hermann, Stephan. Demystifying object schizophrenia. MASPEGHI Workshop
(MechAnisms for SPEcialization, Generalization and inHerItance), at ECOOP'10,
Maribor, Slovenia.

10 Hewitt, Carl ; Bishop, Peter; Steiger, Richard(1973). A Universal Modular Actor
Formalism for Artificial Intelligence. IJCAI.

11 IFIP-ICC Vocabulary of Information Processing; North-Holland,
Amsterdam, Holland. 1966; p. A1-A6.

12 Kay, Alan (1972). "A Personal Computer for Children of All Ages".
http://www.mprove.de/diplom/gui/kay72.html

13 Kay, Alan: The Early History of Smalltalk; ACM SIGPLAN Notices archive; 28, 3
(March 1993);pp 69 - 95

14 Kiczales, Gregor et al. Aspect-Oriented Programming. Published in proceedings of
the European Conference on Object-Oriented Programming (ECOOP), Finland.
Springer-Verlag LNCS 1241. June 1997.

15 Liskov, Barbara. Data Abstraction and Hierarchy. SIGPLAN Notices 23, 5 (May 1988).

16 National curriculum in England: computing programmes of study; [WEB PAGE]
https://www.gov.uk/government/publications/national-curriculum-in-england-computi
ng-programmes-of-study/national-curriculum-in-england-computing-programmes-of-
study

17 Nygaard, K. Dahl, O.-J.; Simula: An ALGOL-based simulation language;
Communications of the ACM 9 (9) (1966): 671. doi:10.1145/365813.365819

18 Parnas, D.L., Clements, P.C.: A Rational Design Process: How and Why to Fake It;
IEE Transactions on Software Engineering, SE-12, February 1986; pp 251 - 257.

19 Reenskaug, T.; Administrative control in the shipyard. ICCAS conference, Tokyo,
1973. Scanned by the author July 2003 to
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf

20 Reenskaug, T.; "Prokon/Plan-A Modelling Tool for Project Planning and Control", in
Proc. IFIP Congress, 1977, pp.717-721.

Draf
t

http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf
http://fullOO.info
http://fullOO.info
www.liquidinformation.org/ohs/62_paper_full.pdf
www.liquidinformation.org/ohs/62_paper_full.pdf
https://github.com/runefs/Marvin
http://www.mprove.de/diplom/gui/kay72.html
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf
https://github.com/runefs/Marvin

draft-1.13 last modified 2015.02.17 18:36 Page 16 ©2014 Trygve M. H. Reenskaug and James O. Coplien

21 Reenskaug, T.: The original MVC reports. Xerox PARC 1978; [Web page]
http://www.duo.uio.no/sok/work.html?WORKID=52648

22 Reenskaug, T.: User-Oriented Descriptions of Smalltalk Systems; Byte Magazine,
August 1981.(The special issue on Smalltalk.)

23 Reenskaug, T.et.al.: Working with objects. The OOram Software Engineering Method.
Manning/Prentice Hall 1996. ISBN 0-13-452930-8.
Out of print. Late draft may be downloaded here .[WEB PAGE]PDF

24 Reenskaug, T: The Case for Readable Code; Klein: Computer Software Engineering
Research; Expert Commentary; pp. 3-8; Nova Science Publishers, New York, 2007;
ISBN-13: 978-1-60021-774-6.
[WEB PAGE] http://heim.ifi.uio.no/~trygver/2007/readability.pdf

25 Reenskaug T.; [WEB PAGE] http://folk.uio.no/trygver/2009/commonsense.pdf

26 Steele, Guy L. "chapter 28", Common LISP: The Language. Bedford,
MA, U.S.A: Digital Press, ISBN 1555580416,
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.

27 OMG Unified Modeling Language (OMG UML), Superstructure. formal/2012-05-07;
Object Management Group April 2012; ISO/IEC19505-2:2012(E)
http://www.omg.org/cgi-bin/doc?formal/12-05-07.pdf

28 Ungar, Smith: Self, the power of simplicity.
http://labs.oracle.com/self/papers/self-power.html, 1987.

29 http://en.wikipedia.org/wiki/Main_Page

30 Rickard Öberg: What is Qi4j? http://qi4j.org/

31 Brian W. Kernighan, P. J. Plauger. The Elements of Programming Style. McGraw-Hill
Book Company, Second Edition 1978, ISBN 0-07-034207-5, pp 59-64.

Draf
t

http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://heim.ifi.uio.no/~trygver/2007/readability.pdf
http://heim.ifi.uio.no/~trygver/2009/commonsense.pdf
http://folk.uio.no/trygver/2009/commonsense.pdf
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/cgi-bin/doc?formal/12-05-07.pdf
http://labs.oracle.com/self/papers/self-power.html, 1987
http://en.wikipedia.org/wiki/Main_Page
http://qi4j.org/
http://www.duo.uio.no/sok/work.html?WORKID=52648

draft-1.14 last modified 2015.02.17 18:36 Page 17 ©2014 Trygve M. H. Reenskaug and James O. Coplien

APPENDIX 1: PROKON ACTIVITY PLANNING: ARCHITECTURE

Section 4 gave an introduction to our Prokon example program.

Having established an object oriented mental model, we are now ready to design the program.
The guiding principle is separation of concerns; we separate the code into largely independent
parts that can be reasoned about and tested in isolation. The program architecture builds on the
complementary paradigms MVC and DCI. MVC (appendix 2) bridges the gap between system
data and a form that can readily be assimilated by the user’s mind. DCI is about creating a
program that faithfully represents the human mental model. The two meet when MVC is used
to bridge the gap between the human mind and the model implied by the DCI mindset.

At the top level, the Prokon program is separated into two main parts according to MVC:
Model, a representation of domain information, and User Interface that bridges the gap between
the human brain and the computer (appendix 2). Each MVC part is subdivided according to
DCI: Data-Model represents the domain information and Context-Model with the operations on
the model. Similarly, Data-UI with the visible user interface and Context-UI with update
operations and complex user interactions. Table 2 distributes the Prokon classes among the four
projections.

Table 2: Projections with their Classes.

The 20 classes are organized in four independent projections. each with a clearly
understood responsibility. Each class can be independently written, read, tested
and maintained. The code is readable.

Model User Interface

Data Model
Activity
Dependency
Resource

Controller
DependencyView
DependencyLine
ActivitySymbol
GanttView
ResourceView
ActivityTextView
BlurbView

Context with Interactions FrontloadCtx
BackloadCtx
ResourceAllocationCtx

AddActivityCtx
AddDependencyCtx
DependencyDisplayCtx
GanttDisplayCtx
ResourceDisplayCtx

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 18 ©2014 Trygve M. H. Reenskaug and James O. Coplien

APPENDIX 2: MVC - THE MODEL, VIEW, CONTROLLER PARADIGM

Figure 9: MVC.

An outcome of research at Xerox PARC on user
interfaces was the MVC
(Model-View-Controller) paradigm21 (figure 9).
The paradigm sustains Douglas Engelbart's
vision of computer augmentation by which
computers extend the human intellect and
improves human collaboration.6 This ‘magic’ is
attained when the Model object seamlessly
represents the human mental model. A View
presents some aspect of it to the user in an
intuitively obvious way.

“There should be a one-to-one
correspondence between the Model and
its parts on the one hand, and the
represented world as perceived by the
user on the other hand. The objects of a
model should therefore represent
identifiable parts of the problem.”21

The MVC Model is simply implemented as classes that realize the tables of figure 6 with their
container: Model, Activity, Dependency, and Resource.

In figure 1, We see 5 views marked through in figure 1. They are implemented as 5 View
objects. A Controller object creates them and makes the selection of an activity simultaneously
visible in all Views.

APPENDIX 3: THE SMALLTALK CODE

Figure 10: BabyIDE, an IDE for coding DCI programs in Squeak.

The Prokon planning program has been implemented in a DCI extension of Squeak using the
BabyIDE tool (figure 10). We see projection flaps along the top; Context-Model is chosen. The
contexts are listed top-left, the frontload context is chosen. Roles with their connectors are
top-right. The selected role is PLAN, its role methods are list bottom-left and its code is
bottom-right.

More details:

Model

Controller

magicmental
model

User Computer

View

User Interface

The MVC Model21 is a representation of the user’s
mental model.

The User is in the driver’s seat and a View bridges the
gap between his or her mind and the Model. Different
Views show different aspects of the Model in a way that
can be readily intuited by the human. The human intuition
also makes it clear how to give input to the Model through
the View.

A Controller sets up one or more Views and coordinates
them, e.g., by making a selection show itself in all Views
simultaneously.

Draf
t

draft-1.14 last modified 2015.02.17 18:36 Page 19 ©2014 Trygve M. H. Reenskaug and James O. Coplien

• The BabyIDE tool is part of the Squeak 3.10 image at
http://fulloo.info/Downloads/BabyIDE.zip

• An HTML listing of the Prokon code is at
http://fulloo.info/Examples/SqueakExamples/BB9Planning/readableVersion.html

• The BabyIDE packages can be loaded into a Squeak 4.5 image with the SqueakMap package loader,
package BabyIdeAllInOne.

We will here include excerpts of the source code relevant for the frontloading operation.

<TBD. The Prokon program is being updated.>

App 3.1: The Frontloading Operation

projection: Data-Model
Object subclass: #Activity

instanceVariableNames: 'name duration earlyStart lateFinish plannedStart resourceRequirement'
earlyFinish

^earlyStart ifNil: [nil] ifNotNil: [earlyStart + duration - 1]

Object subclass: #Dependency
instanceVariableNames: 'fromActivity toActivity''

Object subclass: #Model
instanceVariableNames: 'activities activityPositions dependencies projectStart projectFinish resource'
initialize

super initialize.
activities := OrderedCollection new.
activityPositions := IdentityDictionary new.
dependencies := IdentitySet new.

resource := Resource new.
projectStart := projectFinish := 0.

allActivities
" Return a copy, the activities inst.var. is private to the model object. "
^OrderedCollection newFrom: activities

dependenciesFromActivity: act
^ dependencies select: [:dep | dep fromActivity == act]

dependenciesToActivity: act
^ dependencies select: [:dep | dep toActivity == act]

predecessorsOf: act
^ (self dependenciesToActivity: act) collect: [:dep | dep fromActivity]

recomputeModel
BackloadCtx new backload: self.
FrontloadCtx new frontload: self.
ResourceAllocationCtx new allocateResources: self.

projection: Context-Model
Context subclass: #FrontloadCtx

instanceVariableNames: 'activity model'
" Find earliest time period for each activity. "
frontload: mod

model := mod.
self triggerInteractionFrom: #MODEL with: #frontload.

remap
" Need to find an activity that is ready for planning first since it is used by two role mappings. "
activity := model allActivities

Draf
t

http://fulloo.info/Examples/SqueakExamples/BB9Planning/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB9Planning/readableVersion.html
http://fulloo.info/Downloads/BabyIDE.zip
http://fulloo.info/Downloads/BabyIDE.zip

draft-1.14 last modified 2015.02.17 18:36 Page 20 ©2014 Trygve M. H. Reenskaug and James O. Coplien

detect:
[:act |
act earlyStart isNil and:

[(model predecessorsOf: act) noneSatisfy: [:pred | pred earlyFinish isNil]]]
ifNone: [nil].

super remap.
ACTIVITY

^activity
CONTEXT

^self
MODEL

^model
PREDECESSORS

^activity
ifNil: [Array new]
ifNotNil: [model predecessorsOf: activity]

PROJECTSTART
^model projectStart

Interaction: FrontloadCtx

roleMethods: MODEL
frontload

MODEL allActivities do: [:act | act earlyStart: nil]. " set to unplanned "
[CURRENTCONTEXT remap. ACTIVITY notNil] whileTrue: [ACTIVITY frontload].

roleMethods: ACTIVITY
frontload

 maxPred |
maxPred := PREDECESSORS detectMax: [:pred | pred earlyFinish].
maxPred

ifNil: [ACTIVITY earlyStart: PROJECTSTART.]
ifNotNil: [ACTIVITY earlyStart: maxPred earlyFinish + 1].

MODEL

Draf
t

	1 Introduction
	2 The Roots of DCI
	2.1 Prokon’s Distributed Systems
	2.2 The First Object
	2.3 Kay’s Object Orientation
	2.4 OOram Role Modeling

	3 DCI, the new Programming Paradigm
	3.1 The DCI Object and its Properties
	3.2 The D stands for Data - What the system Is.
	3.3 The C and I stand for Context and Interaction - What the system Does.
	3.4 Summing up

	4 Prokon: Our Activity Network Planning Program
	4.1 Frontloading
	4.2 Resource Allocation

	5 Related Work
	6 Future Work
	7 Conclusion
	8 Acknowledgements
	9 References
	Appendix 1: Prokon Activity Planning: Architecture
	Appendix 2: MVC - the Model, View, Controller Paradigm
	Appendix 3: The Smalltalk code
	App 3.1: The Frontloading Operation

