
Page 1 ©2014 Trygve M. H. Reenskaug and James O. Coplien

D C I a s a N e w F o u n d a t i o n f o r C o m p u t e r P r o g r a m m i n g

Trygve Reenskaug, James O. Coplien
Dept. of Informatics, Gertrud & Cope
University of Oslo Copenhagen
Norway Denmark
(“Trygve”) (“Cope”)

ver.1.3 - Last modified FrameMaker version: November 23, 2013 2:48 pm
draft.1.4.2 - FrameMaker version: Updated and edited from “ver1.3.1.bvs.fdbk.docx”
draft.1.4.5 - Minor updates. (.fm + .pdf)
draft 1.5.1 - Incorporate comments from Risto
draft 1.6.1 - 24.01.07-’Data’ names a kind of projection, not a set of objects. ‘base object’ has been renamed to ‘root object’.
draft 1.7 - 14.01.09 - Updated 'an object is … ' and minor changes.

Abstract

After more than 60 years with computers, hundreds of millions of people are
dexterous at using them. Yet, the source code for a simple app is incomprehensible
to almost all. We claim this is wasteful and passé -- Wasteful, because many valuable
opportunities are lost; passé because computer programming is rapidly becoming an
essential part of primary and secondary education.

We introduce a new paradigm for computer programming called DCI - Data, Context,
Interaction. DCI brings programming to the level of everyday concepts and activities.
The professional programmer can attack complex problems without undue additional
complexity. The software maintainer can preserve system integrity by understanding
and honoring the system architecture long after the originators have moved on to
other projects. DCI can be embedded in different programming languages that are
specialized for different purposes. The DCI concepts can become a unifying
foundation for programming in school curricula.

DCI specifies a program as seen in two orthogonal projections; the Data projection
describes system state and the Context projection system behavior. Recursion further
separates a system into comprehensive levels, each level revealing more details than
the level above.

Key Insights

• A computer can augment the human intellect when the
human mental model closely corresponds to the com-
puter model defined by its program.

• There is ample evidence that the notion of objects is well
matched to the human mind.

• An object-based model of a computation can be shared
between the end user’s mental model and the design of
the program. This gives the user leverage to maximize the
value of the computer.

1 Introduction

We introduce a new paradigm for the understanding and coding of computer programs that we
call DCI - Data, Context, Interaction. In this article, we focus on professional users who apply
computer systems to improve the performance of their tasks. Mental models that are grounded
in their disciplines will drive their work. The goal is to create a program that feels like an
extension of the user's mind. Users need to learn the rudiments of programming so that they can
explore the program’s capabilities and suggest well-founded improvements. The lean principle
“everybody, all together, all the time”3 says that the user shall be an active member of the development
team. There shall be no surprises.

Page 2 ©2014 Trygve M. H. Reenskaug and James O. Coplien

This is not a trivial goal. Indeed, in the introduction to the Design Patterns book8 pp. 22.23, the
authors write: “it's clear that code won't reveal everything about how a system will work.” It is
frightening to read that there are mission critical systems in use today where the code does not
reveal how the system actually works. The end users are not alone in their illiteracy; even
system maintainers and other experts have problems understanding what goes on in the
computer. This problem challenges us to find a way to write code that clearly expresses the
system’s runtime behavior. We need a new programming paradigm such as DCI.

The next wave of the digital revolution arrives next year with every English child being taught
computer programming.16 It starts with the 5-year-olds and continues at least until they turn 16.
We propose that the conceptual framework of DCI can form a unifying foundation for the range
of the concepts to be taught.

DCI is founded on a shared understanding of the nature of representation as clarified in the 1966
IFIP vocabulary of Information Processing11. It has three definitions that stand the test of time:

“DATA. A representation of facts or ideas in a formalized manner capable of being
communicated or manipulated by some process.”

“INFORMATION. In automatic data processing the meaning that a human assigns to
data by means of the known conventions used in its representation.”

“DATA PROCESSING. The execution of a systematic sequence of operations
performed upon data.”

The end user’s mental model is in the center of our attention in this article. A program is
contemplated in two orthogonal projections. The DCI Data projection captures the information
content of the mental model. The DCI Context projection captures its data processing
properties. The mental model is reified in readable code23. By “readable”, we mean code that is
cleanly partitioned and that clearly exhibits the designer's intent. More importantly, it means
that we optimize the amount of code at hand so stakeholders can reason about the system at a
granularity that suits them, without being burdened with extraneous artifacts and with a
minimum of loose ends in the reader's mind.

The DCI paradigm is based on the concept of objects that was introduced by Ole Johan Dahl
and Kristen Nygaard in the mid 1960s.17 The notion has matured over the years, and in
section 2: Prior Art we glean powerful concepts created over the past four decades. DCI builds
on these concepts, and its main goals are:

MENTAL MODELS. To reflect the way different users conceptualize the objects of their world so that
a program that feels like an extension of its user's mind.

REASONING. To help software developers reason about system state and behavior in addition to the
state and behavior of isolated objects.

READABILITY. To improve the readability of object-oriented code by giving system behavior
first-class status.

REUSE. To be able to reuse old solutions for new purposes.

REVISION. To cleanly separate code for rapidly changing system behavior (what the system does)
from code for slowly changing domain knowledge (what the system is), instead of combining both
in one class hierarchy.

These goals are resolved with the DCI paradigm presented in section 3: DCI, the new
Programming Paradigm. A simple example follows in section 4. In section 5: Related Work,
we briefly comment on other efforts that are related to DCI. Suggestions for further work are in
section 6. In section 7, we conclude with the vision of DCI as a programming paradigm that
spans many programming and modeling languages as well as human users ranging from
professionals in business and industry and other stakeholders, to game developers, composers,
schoolchildren, and professional programmers.

Page 3 ©2014 Trygve M. H. Reenskaug and James O. Coplien

2 Prior Art

Fundamentally, a computer offers three simple services: It can process data, it can store data,
and it can communicate data----So simple, yet so powerful when combined in various ways into
comprehensive programs. Trygve has for more than 40 years been working towards making this
fundamental simplicity penetrate into the programs we write and use. DCI is the most recent
result of this work, but it builds on what he has learned through the years. This section gives
some highlights of his experiences that lead up to DCI. He has undoubtedly missed important
developments over the years; some of them are mentioned in section 5.

2.1 Prokon’s Distributed Systems

Figure 1: Prokon, a distributed system architecture

By 1970, it was clear that there was a
fundamental mismatch between centralized
database architecture and the decentralized
nature of an organization’s distribution of
responsibility and authority.18 The Prokon
project proposed a distributed system
architecture (figure 1) to restore the balance
between an organization’s distribution of
responsibility and the system architecture.

Four of the major requirements for Prokon were:

1) Managers should be autonomous within their
fields of responsibility and own the computer
that served them. They were free to decide how
to do their work as long as they fulfilled their
responsibilities.

2) Business information was distributed between the individual subsystems. This lead to a three-level
architecture with a data store at the database level, data processing at the application level, and a
communication level at the top that integrates the different subsystems. Communication became a
first class citizen of system architecture.

3) Managers should understand how their computers work and should oversee its creation. They
should preferably be able to write part of the code themselves.

4) The individual subsystems were bound together by overall algorithms that ensured overall
completeness and consistency. (“Local independence combined with central control.”)19

The project was never completed, but it had many ideas that point towards DCI. First, the focus
on the end user as the defining entity for both architecture and system details. Second, the
importance of the communication bus that connects the autonomous systems that encapsulate
state and behavior. Third, the need for algorithmic control over the communication as a whole.

2.2 The First Object

Nygaard and Dahl’s concept of objects was realized in the programming language Simula 6717.
The language introduced object modeling as a new and powerful way of thinking about
complex systems. Originally designed to simulate real-world phenomena, Simula has also
enjoyed application as a general-purpose programming language. The construction of a Simula
object is given by a class declaration that includes a name, a data structure declaration, and the
action pattern of each object of the class. (We shall later use the terms attributes for the data
structure and methods for the action pattern). The Simula experience indicated that complex
physical systems could be naturally reflected in object-based mental and computerized models.
The Simula objects marked an important step towards the DCI paradigm.

Each manager used his own real or virtual
computer for his various tasks and was
responsible for its communication with other
managers’ computer by sending scheduled
reports and responding to inquiries.18

Page 4 ©2014 Trygve M. H. Reenskaug and James O. Coplien

2.3 Kay’s Object Orientation

Figure 2: The Smalltalk experiment.

From the late sixties, Alan Kay had worked on
his vision of a Dynabook: “A personal
computer for children of all ages.”12 As part of
his work, he introduced a powerful object
model that he called object orientation:

“In computer terms, Smalltalk is a
recursion on the notion of computer itself.
Instead of dividing “computer stuff” into
things each less strong than the
whole--like data structures, procedures,
and functions which are the usual
paraphernalia of programming
languages--each Smalltalk object is a
recursion on the entire possibilities of the
computer. Thus its semantics are a bit
like having thousands and thousands of
computers all hooked together by a very
fast network...”13

Kay's idea enabled the distributed systems of figure 1 to be populated by Smalltalk objects.
Research showed that the idea of objects were natural even to children, who could use Kay's
ideas to write simple programs. (figure 2) Kay and every one of his colleagues at Xerox Palo
Alto Research Center (PARC) had their own Alto computer as shown in the figure. All were
connected through a very fast Ethernet network. This realized the hardware dream of Prokon
(figure 1).

The DCI architecture is object-oriented, but with the addition of algorithms for object
collaboration in the DCI Contexts.

2.4 MVC - the Model, View, Controller Paradigm

Trygve had the privilege to work as a visiting scientist at PARC in 1978/79. Here, the Prokon
hardware vision was reality and the Prokon communicating computers could be simulated with
Smalltalk programs.

Kay’s group at PARC taught programming to
children. The children see each object as a
‘turtle’ with a pen under its belly.

turtle go: 100; turn: 90; go: 100; turn: 90;
go: 100; turn: 90; go: 100.

makes the turtle draw a square.

Page 5 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Figure 3: The Model-View-Controller-User paradigm.

While at PARC, Trygve focused on the problem
of a person interacting meaningfully with a
complex activity network plan through a small
computer screen. The Alto bitmapped display
and mouse pointing device opened fascinating
opportunities. But the plan was still large and the
screen still small. An outcome of the research
was the Model-View-Controller (MVC)
paradigm. (figure 3) The paradigm sustains
Douglas Engelbart's vision of computer
augmentation by which computers extend the
human intellect and improve human
collaboration.6 This ‘magic’ is attained when the
Model object seamlessly represents the human
mental model. A View presents some aspect of it
to the user in an intuitively obvious way.

“There should be a one-to-one correspondence between the Model and its parts on the one
hand, and the represented world as perceived by the owner of the Model on the other hand.
The nodes of a model should therefore represent an identifiable part of the problem.”20

MVC and DCI are complementary paradigms. MVC transforms the Model data into a physical
form that can readily be assimilated by the user’s brain. DCI is about creating a program that
faithfully represents the human mental model. The two meet when MVC is used to bridge the
gap between the human mind and the model implied by the DCI-based computer system.

2.5 OOram Role Modeling

Figure 4: OOram role modeling.

OOram, Object Oriented Role Analysis and
Modeling, modeled the behavior of an object
system as a flow of messages between
participating objects. Its main innovation was the
Role that identified an object in a network of
interacting objects.22

In section 4, we will give a simple example
where a person uses a bank terminal (ATM) to
transfer money from one account to another.
Figure 4 shows the OOram scenario diagram of a
simplified computer process for this example.
Many different kinds of accounts can stand in for
both the SourceAccount and DestinationAccount
roles.

OOram's essential contribution is the notion of a
role as the name of an object according to its use.
OOram - like its descendant, the UML collaboration26 - looks only at the sequence of messages
and doesn’t exhibit the code that makes this happen. A subsequent series of evolutionary steps
has led to DCI with its role methods that make the messages flow according to plan.

Model

Controller

magicmental
model

User ComputerView

Model

Controller

magicmental
model

User ComputerViewView

The MVC Model20 is a representation of the
user’s mental model.

The User is in the driver’s seat and a View
bridges the gap between his or her mind and
the Model. Different Views show different
aspects of the Model in a way that can be
readily intuited by the human. The human
intuition also makes it clear how to give input
to the Model through the View.

A Controller sets up one or more Views and
coordinates them, e.g., by making a selection
show itself in all Views simultaneously.

OORAM: Object Oriented Role Analysis and
Modeling was a system for modeling system
behavior.

The role model is the basic object abstraction
in the OOram technology. A real world
phenomenon is described as a number of
collaborating objects that are represented by
the role they play in the collaboration.22

Object interaction is modeled as a sequence of
messages (shown as arrows). The process
starts in an object outside the system (shown
with dashed outline). The first message
triggers the system operation.

ATM
Source-
Account

Destination-
Account

transfer: amnt to: acct

deposit: amnt

Page 6 ©2014 Trygve M. H. Reenskaug and James O. Coplien

3 DCI, the new Programming Paradigm

Separation of concerns is a powerful strategy to master complexity. A well-known example is
the traditional data-centric architecture with a central database and application programs
arranged around it. The database contains pre-formed data that represent information in the
user’s mental model. Data processing is realized by different application programs. Each
application can access the database through a bridge (external view) that is tailored to its
particular needs. Further separation of concerns can be achieved with functional decomposition
of each application.

The DCI architecture resembles the traditional database-centered architecture in its separation
of static data and dynamic system operations. The Data projection is like a database description
and describes interesting data. The Context projection is like a traditional application program
and describes the functionality associated with a particular requirement such as a use case
scenario. The Interaction is part of a Context and is a functional decomposition of the Context
functionality. This functionality is realized by the interaction of participating objects that are
known by the roles they play in the Interaction.

DCI sees a program in two orthogonal projections. The Data projection describes system
state. The Context projection describes system behavior; there is one of the latter for each
use case scenario.

The DCI object is a specialization of Kay’s “an object is like a computer” (section 3.1). The
traditional bridge between a database and an application is replaced by a runtime selection in
the Context that maps roles to objects according to their use. Typically, the roles will be mapped
to different objects in different executions. This mapping maintains the consistency between
otherwise independent Data and Context projections. The projections can, therefore, evolve at
different rates and can be implemented and tested by different people. We have chosen to
discuss the Context with its Interaction first since this is a DCI innovation. (section 3.2) We
describe the Data last since this is merely a stripped-down version of the well-known
class-oriented programming (section 3.3). Further, Contexts can be tested on preliminary data
as long as the objects fulfill the role expectations.

3.1 The DCI Object and its Abstractions

Kay’s notion of object orientation (section 2.3) defines an object as a self-contained entity that
has all the capabilities of a computer. We add ideas from Prokon (section 2.1) and OOram
(section 2.5) to define the DCI object. This object has five basic properties that are essential to
the DCI paradigm:

Static properties

State Like a computer, the DCI object has memory called its attributes. Think of an object
as a database record that is encapsulated within the object boundary.

Behavior Like a computer, the DCI object can process data with its methods. Think of them as
local procedures that are visible only within the object.

Dynamic properties

Encapsulation Like a computer, a DCI object is encapsulated within an abstraction boundary. The
object presents a message interface to its environment just as the computer
presents an instruction repertoire. The actual realization in software or hardware is
not visible outside the object’s boundary. Different objects may invoke different
methods for the same message, this is called polymorphism.

Communication Like a computer, a DCI object can collaborate with other objects through message
interaction. Communication is now a first class citizen of computer programming.

Identity Like a computer, a DCI object has a unique and immutable identity. This is essential
for reasoning about networks of interacting objects.

Page 7 ©2014 Trygve M. H. Reenskaug and James O. Coplien

DCI systems combine objects with the above simple capabilities in various ways to enable
millions of different applications.

A DCI object is encapsulated, its inner construction is invisible from the outside.
Consequently, the object’s inside can be anything: A network of communicating objects, a
Fortran program, an SQL machine, a state machine, a Petri net, or it can follow any other
paradigm. The DCI Object supports multi-paradigm design.2

DCI uses two abstractionsa on objects, the class or its equivalent and the role. The class is the
predominate object abstraction used in current programming and research. We only consider
object state and behavior as the only properties relevant here; the communication properties are
ignored. The DCI Data projection is expressed with classes or their equivalent. The notion of
interacting objects is outside the scope of the Data projection.

The DCI role is a new and equally important abstraction on objects. A role names an object as
it collaborates with other objects at runtime (OOram, section 2.5). The DCI Context projection
is expressed with roles. The object’s inner construction, possibly with class and superclasses, is
outside the scope of the Context projection.

Object encapsulation demarcates the boundary between the class and role abstractions. Roughly
speaking, the class is on the inside and the role is on the outside of this boundary.

The role abstraction is the dual of the class abstraction. The role abstraction says nothing
about the inner structure of an object but says everything about how the object is used
together with other objects. The class abstraction says everything about the inner
construction of an object but says nothing about how it is used in interaction with other objects.

3.2 The C and I in DCI stands for Context and Interaction - What the system
Does.

Data classes give rise to the objects that interact to implement system operations. Object
interaction takes place within a Context where the objects are identified by the Roles they play.
Objects are temporarily extended with Role Methods while they are playing a role. Functional
decomposition is used to distribute the Interaction algorithm onto participating role-playing
objects and thence to their role methods. Role methods are associated with the roles rather than
with classes. This means that we can reason about system operations without having to study
the classes of the role-playing objects. As Brian Kernighan characterized C functions, a method
should do one thing and do it well. Each should fit on one or two screens of text. 30

A role method creates an ephemeral extension of object functionality while it is needed at
runtime. Role methods can, therefore, extend instances of library classes without having
access to those classes.

An object acquires additional functionality in different Contexts while still retaining its identity.

It is through this dynamic role-based extension mechanism that DCI implements polymorphism
and its accompanying succinctness. In traditional object-oriented programming, many different
kinds of objects could satisfy a given request for service from a client. In DCI we instead think
in terms of service aggregates called roles. Many kinds of object can play each role, and many
combinations of kinds of objects can play the roles of a given Context. This “many kinds”
property is where DCI implements the object notion of polymorphism.

a. Wikipedia defines: “Abstractions may be formed by reducing the information content of a concept or an observable
phenomenon, typically to retain only information which is relevant for a particular purpose”28

Page 8 ©2014 Trygve M. H. Reenskaug and James O. Coplien

The Context regards objects only in terms of their identities and the interfaces they provide.
Their actual construction is irrelevant. The writers of role methods use their domain knowledge
to understand and employ these interfaces. They must accept the provided interfaces on trust
since they cannot accurately identify the corresponding class-defined methods. This trust is
well placed because the methods visible in the Data perspective, like C functions, compute only
simple operations on the data within their domain of responsibility. These methods will not, at
the level of the active design discourse, trigger ensuing execution sequences across object
boundaries.

Figure 5: Object, class, and role.

Figure 5 illustrates how the role abstraction
supports the specification of an ensemble of
collaborating objects.

The value of a class-oriented system is
maximally the sum of its parts. The addition of
explicit information about the runtime
relationships between the parts can make the
value of a DCI system greater than the sum of its
parts.

3.3 The D in DCI stands for Data - What
the system Is.

Many objects represent ideas in the user's
problem domain. Other objects are helpers such
as values and collections that are reflected in the
programmer's mental model. An MVC View can
play a role in an Interaction that updates the View
contents; the roles being View and Model. An
object can even be a Context that plays a role in
an outer Context, thus supporting recursion.

An object is an entity that encapsulates state and
behavior. An object can play a role in a context. It
is created as an instance of a class, a copy of a
prototype, or some other construction
mechanism. For convenience, we use the word
class for all such mechanisms.

Classes can be very simple since all system
functionality is moved to the Contexts.
Informally, we say that an object is unaware of its
environment.

In the introduction, we defined information as
“the meaning that a human assigns to data by means of

the known conventions used in its representation.” An
implementer of a class uses those conventions and
a code reader applies them to make sense of the

code. Both see the instances from their inside and reason about each class in isolation. The
writer of the class takes responsibility for its correct implementation to permit the writer of a
role method to take the object’s interface on trust.

This figure shows a universe of
communicating objects. Instances of
different classes are shown as different
shapes.

An observer placed in the space between the
objects can trace the messages that flow
through an ensemble of objects during the
execution of an operation. Different
executions will typically involve different
sets of objects. DCI requires that the
topology of the traces must be the same for
all executions of the same operation.

The topology is a directed graph where the
nodes are roles and the edges are
connectors. (Shown colored in the picture).
The roles are marked {R1} through {R4},
the connectors are shown as arrows. The
ensemble of objects is mapped on to the
roles within a Context. This is the form of
the execution

At runtime, a Context musters the objects
that shall play its roles and starts the flow of
Interaction messages that achieves the
required operation.

According to Dictionary.com, the origin of
the word role is the French rôle roll (as of
paper) containing the actor's part. An actor
was reading from this roll while performing
his part. We analogously extend the roles
with role methods that extend the behavior
of objects while they play the role at
runtime.

Object

R1

R4

R2

R3

Role

Context

Observer
ObjectObject

R1

R4

R2

R3

Role

ContextR1

R4

R2

R3

Role

Context

Observer

Dictionary.com

Page 9 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Like a computer, a root object does not expose how it reifies the messages in its interface.
The object’s boundary forms, by definition, an abstraction boundary. In contrast, the role
methods in a DCI Context are outside the object’s abstraction boundary; they are
compressions that are open to reading and understanding, rather than abstractions whose
correct functioning is left to trust.

4 Money Transfer: A Simplified Example

Assume we shall build software for an Automated Teller Machine (ATM) and that one use case
is to support an end user who transfers money from one bank account to another. User,
programmer, and bank expert cooperate to capture a shared mental model according to the lean
principle “Everybody, all together, all the time”.3 The team elicits the end user’s description of what
he or she wants to do. One possible response could be: “Well, I choose an account and a transfer
amount, and then I choose another account, and ask the system to transfer that money between
the accounts”.

The programmer settles on MVC for the user interface. The implementation of Controller and
View is plain programming and will not be discussed here. What remains is the Model, i.e., the
banking side of the solution. The bank expert knows that what really matters is not the accounts,
but the bank’s ledger; an unordered set of immutable bank transaction records. It is the
programmer’s responsibility to unify the user’s account model and the bank’s transaction
model. He or she decides to let the account objects be caches on the ledger and thus
accommodate both. We ignore the ledger in this simplified example and refer the interested
reader to a more realistic program in the DCI Home page5.

The task is to build a bridge between the end user’s mental model with its accounts and the bank
with its accounts. We arbitrarily choose to describe the Data projection first and the Context
later. The code is written in Smalltalk because this language has been explicitly designed to be
readable by non-experts. Many experts find the unusual Smalltalk syntax a barrier, but it takes
little effort to surmount it. (See the explanation before the Smalltalk examples in 5).

4.1 Data projection

We may ultimately implement a database schema for the bank with appropriate Data classes,
but start with dummy classes to give the Context programmer something to use in his or her
tests. One Data class is sufficient in this simple example

Object subclass: #Account
instanceVariableNames: 'balance'

" External interface methods. "
balance
 ^balance

decrease: amount
 balance := balance - amount.

increase: amount
 balance := balance + amount.

There could be subclasses such as CheckingAccount, SavingsAccount, and LoanAccount. We ignore
them here because the corresponding roles can be played equally well by instances of any of
them.

Page 10 ©2014 Trygve M. H. Reenskaug and James O. Coplien

4.2 Context projection

Figure 6: What the system does;
the MoneyTransfer Context.

The use case is reified in the MoneyTransferContext
class. The role topology is shown in figure 6.
The Context has three roles that stem from the
end user mental model: SourceAccount,
DestinationAccount, and Amount.

A command from the user is passed through the
View and triggers the system operation in the
Context: transfer: amt from: account1 to: account2.

The corresponding Context method first binds
roles to objects before it triggers the first method
in the first role in the Interaction as follows:

MoneyTransferContext>>transfer: amt from: account1 to: account2
self newRoleMap

at: #Amount put: amt ;
at: #SourceAccount put: account1 ;
at: #DestinationAccount put: account2 ;

self triggerInteractionFrom: #SourceAccount with: #transfer.

4.2.1 Interaction

A model of the interaction is shown in figure 4. The actual code shows the details. The Context
triggers the flow of messages in the transfer role method:

“ Role method. “
SourceAccount >> transfer

self balance >= Amount
ifTrue:

[self decrease: Amount.
DestinationAccount deposit]

ifFalse:
[self error: 'Insufficient funds'].

“ Role method. “
DestinationAccount>> deposit

self increase: Amount.

5 Related Work

DCI has strong echoes of ideas that came and went before it, many of which attempted to
address related problems with object orientation since its early days. In the same sense that DCI
breaks the common Cartesian classification found in class-oriented programming, so did many
of these earlier concepts and features. Cannon's Flavors1 offers “mix-ins” as a way to associate
multiple lightweight classes and their methods with a single object. However, Flavors has no
notion of sequencing the “mix-in” methods and no way to associate stand-alone “mix-ins” in a
standalone (i.e., without classes or objects) execution graph.

Steele's multiple dispatch25 provided a way to associate multiple objects through a single
operation that engages all of them. Different combination of object types are mapped onto
different method selectors. Multiple dispatch is somewhat like DCI inside-out: no single
sequencing of role methods serves all combinations of object types, but rather each combination

SourceAccount

Amount

DestinationAccountSourceAccount

Amount

DestinationAccount

There are two roles playing domain objects
and a third role is just naming a value. The
SourceAccount and DesitinationAccount roles can
be played by any kind of account object such
as a general account, a savings account, or a
loan account. In fact, any object that can
understand the balance and decrease: amt
messages can play the SourceAccount role and
any object that understands the increase: amt
message can play the DestinationAccount role.
The Amount role merely names a value.

Page 11 ©2014 Trygve M. H. Reenskaug and James O. Coplien

of object types implicates a method suitable to that combination, which in turn sequences
actions upon those instances.

The self language of Ungar and Smith27 has strong facilities to encourage thinking in terms of
objects instead of classes, which guards against class-oriented thinking. But, again, there is no
focus on a single locus of recurring execution sequence analogous to a DCI Context.

In many ways, DCI implements one deeper level of reflection than its weaker cousin that
supports the polymorphism found in most modern object-oriented programming languages.
The original vision of Aspect-Oriented Programming (AOP)14 was also rooted in reflection, and
also arranged to factor out scattered implementations of key design concerns into a central
concept called an Aspect. However, Aspects tend to focus on multiple insertions (at joinpoints)
of a single change (advice) rather than on the coordinated introduction of sequenced methods
across an arbitrary set of objects. Its mechanisms tend to be class-oriented rather than encoding
any system-level view of what objects should play which roles. AOP tends to operate at the
level of the programming language execution model, while DCI tends to operate at the level of
business concepts. Aspects tend to erode code readability while DCI enhances it.

DCI is in many ways similar to Actors10, but in the end is fundamentally different. Both take
the triad of store, transform (or process) and communicate as their foundation. Actors is based
on a many-to-many addressing model whereas DCI is based on a one-to-many association
model between roles and objects and a fixed role method sequencing taxonomy.

ObjectTeams is a separate effort that emphasizes separate run-time entities for roles and the
objects that play them.9 Its goals are similar to those of DCI, but its failure to maintain object
identity introduces errors into algorithms that depend on it, as can be demonstrated with a
simple program.4 ObjectTeams converted its terminology to be consistent with DCI
terminology in 2013.

6 Future Work

A concrete vision that foresaw today's state of DCI dates back to about 2003, which means that
DCI today may be where original object orientation was in the early 1980s. Work remains to
further formalize the DCI metamodel. There may be interesting work to be done on concurrency
in ways that reflect the original Simula goals of simulated or real parallel time threads, and to
evaluate how those play with the single-thread execution model of DCI Contexts. The
constraints that Contexts place on object interactions offer the possibility of formal program
analyses that were impossible in the past without sacrificing polymorphism.

7 Conclusion

We started this article with a quote8, saying that an object-oriented program has two structures.
The first is the code structure; it is frozen at compile time and consists of a hierarchy of classes.
The second structure is orthogonal to the first and “consists of rapidly changing networks of
communicating objects”. In that world “the code won't reveal everything about how a system
will work”. The problem was clearly that current technology does not offer a concise way of
coding the process of computation.

Our solution is DCI with its static Data projection showing a hierarchy of classes and the
Context projection that realize use case scenarios and other system operations as dynamic
networks of communicating objects.

Section 2 chronicled more than 40 years of gradual evolution to towards the simple solution
called DCI. DCI meets the 5 goals that were listed in the introduction:

Page 12 ©2014 Trygve M. H. Reenskaug and James O. Coplien

Mental Models. There is ample evidence from a variety of people ranging from professionals to
children that object models fit well to the human mind. DCI achieves the 'magic' of
figure 3.

Reasoning. We work with a DCI program in the orthogonal Data and Context projections. This
conceptually simple, yet effective two-dimensional representation enables a
developer to reason about one dimension at the time.

Readability. Readable code is code that is cleanly partitioned and that clearly exhibits the system
design.23 The two-dimensional representation in DCI provides such independent
partitions.

Reuse. There are two opportunities for reuse with DCI. One is that the classes are self
contained. They are independent of their environment and can be reused for other
purposes. The second is that a Context implements a system operation. This
Context can be used by another, outer, Context analogously to a subroutine. This
reuse reflects the recursive nature of DCI.

Revision. Data and Context are orthogonal; this invites independent evolution. A slowly
evolving Data structure in the classes is decoupled from the more rapidly changing
business logic in the Contexts. Contexts can be added, deleted, and changed
independently of the other parts of the system.

Proof-of-concept implementations in Squeak and Marvin5 show that the DCI paradigm can be
expressed in suitable programming languages and supported in effective development
environments. Interesting developments are happening with adapting a number of languages to
DCI. The goal is to make a program design conform to an end user's mental model of a system
and clearly express it in code that reveals how a system will work.

“More than twenty years of experience has shown us that a bad system design can never be
hidden from the user, even by a masterfully devised user interface. A quality system,
therefore, must be based on sound design that can be described in terms with which the user
is familiar.”21

Software creates value only when an end user executes it for a purpose. History and common
sense argue that users can reap the full value only when they understand how the system works;
the ideal being that a stakeholder can write his or her own code. We have shown that DCI is well
attuned to the human mind. DCI can, therefore, be a key to user understanding of what goes on
in the computer when he or she applies it to his various tasks. Indeed, we claim that DCI is so
powerful that it can form a conceptual foundation for expert programmers and it is so simple
and universal that it can form a foundation for children learning about computing as a part of
their four Rs: Reading, wRiting, aRithmetic, and pRogramming.

At long last, communication is a first class citizen of programming. Store, process, and
communicate, the primitives of computing that are captured in the DCI paradigm. So simple
that everybody can understand it, so universal that it can form the nucleus of computing in
business and school.

8 Acknowledgements

Gertrud
Rune
Morten
Bran
Risto
+++

Page 13 ©2014 Trygve M. H. Reenskaug and James O. Coplien

9 References

.

1 Cannon, Howard. Flavors: A non-hierarchical approach to object-oriented
programming.
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf, 1979.

2 James O. Coplien: Multi-Paradigm Design for C++; Addison-Wesley Professional;
1998; ISBN 0201824671

3 Coplien, J.O., Bjørnvig, G; Lean Architecture for Agile Software Development; Wiley,
Chichester, UK, 2010; ISBN 978-0-470-68420-7

4 Coplien, James O., and Trygve Mikkjel Heyerdahl Reenskaug. The data, context and
interaction paradigm. In Gary T. Leavens (Ed.): Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH '12, Tucson, AZ,
USA, October 21-25, 2012. ACM 2012, ISBN 978-1-4503-1563-0, pp. 227 - 228.

5 The DCI Home page. http://fullOO.info

6 Douglas C. Engelbart: Augmenting Human Intellect: A Conceptual Framework.
Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578
for Air Force Office of Scientific Research, Stanford Research Institute, Menlo Park,
Ca., October 1962: www.liquidinformation.org/ohs/62_paper_full.pdf

7 Rune Funch Søltoft: Marvin. https://github.com/runefs/Marvin

8 Gamma et.al.: Design Patterns. Addison Wesley1995

9 Hermann, Stephan. Demystifying object schizophrenia. MASPEGHI Workshop
(MechAnisms for SPEcialization, Generalization and inHerItance), at ECOOP'10,
Maribor, Slovenia.

10 Hewitt, Carl ; Bishop, Peter; Steiger, Richard(1973). A Universal Modular Actor
Formalism for Artificial Intelligence. IJCAI.

11 IFIP-ICC Vocabulary of Information Processing; North-Holland,
Amsterdam, Holland. 1966; p. A1-A6.

12 Kay, Alan (1972). "A Personal Computer for Children of All Ages".
http://www.mprove.de/diplom/gui/kay72.html

13 Kay, Alan: The Early History of Smalltalk; ACM SIGPLAN Notices archive; 28, 3
(March 1993);pp 69 - 95

14 Kiczales, Gregor et al. Aspect-Oriented Programming. Published in proceedings of
the European Conference on Object-Oriented Programming (ECOOP), Finland.
Springer-Verlag LNCS 1241. June 1997.

15 Liskov, Barbara. Data Abstraction and Hierarchy. SIGPLAN Notices 23, 5 (May 1988).

16 National curriculum in England: computing programmes of study; [WEB PAGE]
https://www.gov.uk/government/publications/national-curriculum-in-england-computi
ng-programmes-of-study/national-curriculum-in-england-computing-programmes-of-
study

17 Nygaard, K. Dahl, O.-J.; Simula: An ALGOL-based simulation language;
Communications of the ACM 9 (9) (1966): 671. doi:10.1145/365813.365819

18 Reenskaug, T.; Administrative control in the shipyard. ICCAS conference, Tokyo,
1973. Scanned by the author July 2003 to
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf

19 Reenskaug, T.; "Prokon/Plan-A Modelling Tool for Project Planning and Control", in
Proc. IFIP Congress, 1977, pp.717-721.

20 Reenskaug, T.: The original MVC reports. Xerox PARC 1978; [Web page]
http://www.duo.uio.no/sok/work.html?WORKID=52648

http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf
http://fullOO.info
http://fullOO.info
www.liquidinformation.org/ohs/62_paper_full.pdf
www.liquidinformation.org/ohs/62_paper_full.pdf
https://github.com/runefs/Marvin
http://www.mprove.de/diplom/gui/kay72.html
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1- 20040122.pdf

Page 14 ©2014 Trygve M. H. Reenskaug and James O. Coplien

21 Reenskaug, T.: User-Oriented Descriptions of Smalltalk Systems; Byte Magazine,
August 1981.(The special issue on Smalltalk.)

22 Reenskaug, T.et.al.: Working with objects. The OOram Software Engineering Method.
Manning/Prentice Hall 1996. ISBN 0-13-452930-8.
Out of print. Late draft may be downloaded here .PDF

23 Reenskaug, T: The Case for Readable Code; Klein: Computer Software Engineering
Research; Expert Commentary; pp. 3-8; Nova Science Publishers, New York, 2007;
ISBN-13: 978-1-60021-774-6.
[WEB PAGE] http://heim.ifi.uio.no/~trygver/2007/readability.pdf

24 Reenskaug T.; [WEB PAGE] http://folk.uio.no/trygver/2009/commonsense.pdf

25 Steele, Guy L. "chapter 28", Common LISP: The Language. Bedford,
MA, U.S.A: Digital Press, ISBN 1555580416,
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.

26 OMG Unified Modeling Language (OMG UML), Superstructure. formal/2012-05-07;
Object Management Group April 2012; ISO/IEC19505-2:2012(E)
http://www.omg.org/cgi-bin/doc?formal/12-05-07.pdf

27 Ungar, Smith: Self, the power of simplicity.
http://labs.oracle.com/self/papers/self-power.html, 1987.

28 http://en.wikipedia.org/wiki/Main_Page

29 Rickard Öberg: What is Qi4j? http://qi4j.org/

30 Brian W. Kernighan, P. J. Plauger. The Elements of Programming Style. McGraw-Hill
Book Company, Second Edition 1978, ISBN 0-07-034207-5, pp 59-64.

http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf
http://heim.ifi.uio.no/~trygver/2007/readability.pdf
http://heim.ifi.uio.no/~trygver/2009/commonsense.pdf
http://folk.uio.no/trygver/2009/commonsense.pdf
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.
http://books.google.com/books?id=8Hr3ljbCtoAC, 1990.
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/cgi-bin/doc?formal/12-05-07.pdf
http://labs.oracle.com/self/papers/self-power.html, 1987
http://en.wikipedia.org/wiki/Main_Page
http://qi4j.org/

	1 Introduction
	2 Prior Art
	2.1 Prokon’s Distributed Systems
	2.2 The First Object
	2.3 Kay’s Object Orientation
	2.4 MVC - the Model, View, Controller Paradigm
	2.5 OOram Role Modeling

	3 DCI, the new Programming Paradigm
	3.1 The DCI Object and its Abstractions
	3.2 The C and I in DCI stands for Context and Interaction - What the system Does.
	3.3 The D in DCI stands for Data - What the system Is.

	4 Money Transfer: A Simplified Example
	4.1 Data projection
	4.2 Context projection
	4.2.1 Interaction

	5 Related Work
	6 Future Work
	7 Conclusion
	8 Acknowledgements
	9 References

